
This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Excess Molar Volumes and Partial Molar Volumes for Binary Mixtures of Water With 1,2-Ethanediol, 1,2-Propanediol, and 1,2-Butanediol at 293.15, 303.15 and 313.15 K

H. Iloukhani^a; H. Bahrami^a ^a Department of Chemistry, Faculty of Science, Bu-Ali-Sina University, Hamadan, Iran

To cite this Article Iloukhani, H. and Bahrami, H.(2000) 'Excess Molar Volumes and Partial Molar Volumes for Binary Mixtures of Water With 1,2-Ethanediol, 1,2-Propanediol, and 1,2-Butanediol at 293.15, 303.15 and 313.15 K', Physics and Chemistry of Liquids, 38: 1, 103 - 111

To link to this Article: DOI: 10.1080/00319100008045301 URL: http://dx.doi.org/10.1080/00319100008045301

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 2000, Vol. 38, pp. 103-111 Reprints available directly from the publisher Photocopying permitted by license only

EXCESS MOLAR VOLUMES AND PARTIAL MOLAR VOLUMES FOR BINARY MIXTURES OF WATER WITH 1,2-ETHANEDIOL, 1,2-PROPANEDIOL, AND 1,2-BUTANEDIOL AT 293.15, 303.15 AND 313.15 K

H. ILOUKHANI* and H. BAHRAMI

Department of Chemistry, Faculty of Science, Bu-Ali-Sina University, Hamadan, Iran

(Received 31 January 1998)

From dilatometric method at 293.15, 303.15, and 313.15 K for binary mixtures of water and 1,2-alkane diols, the excess molar volumes, V^E and the partial molar volumes, \bar{V}_i of both components at 293.15 K have been obtained as a function of mixtures composition. Excess molar volumes were calculated and correlated by a Redlich-Kister type function in terms of mole fraction. The partial molar volumes have been extrapolated to zero concentration to obtain the limiting values at infinite dilution, \bar{V}_i^o . All mixtures showed negative values and decreases with the chain length of diols. The values become less negative with increasing temperature. The results are explained in terms of dissociation of the self-associated diol molecules and the formation of aggregates between unlike molecules.

Keywords: Excess molar volumes; 1,2-alkanediol; hydrogen bond

1. INTRODUCTION

Following our study on the measurement of thermodynamic properties of nonelectrolyte solutions in which specific interactions between unlike molecules can occur [1-3] we present here excess molar

^{*}Corresponding author.

volumes, V^E at 293.15, 303.15, and 313.15 K and also partial molar volumes, \bar{V}_i of water with the series of three 1,2-alkanediols at 293.15 K. For these completely miscible (water + organic) mixtures, there is interest in using volumetric data for calculations of the effects of pressure on thermodynamic properties and also to extend our understanding of molecular interactions in (water + organic) mixtures. Temperature dependence on excess molar volumes and study of influence of associated species of diols by dilution with water is considered. By extrapolation of partial molar volumes to infinite dilution, limiting partial molar volumes, \bar{V}_i° are also obtained. These values are interesting from a theoretical point of view since at infinite dilution the only interactions present are solute-solvent interactions.

2. EXPERIMENTAL SECTION

Characterization data for the chemicals used in this study are listed in Table I. Diols used were purified by distillation using a 1 m fractionation column. The purified components were stored in brown glass bottles and fractionally distilled immediately before use. Water was double distilled and degassed before use. Purity of each component was ascertained by the constancy of the boiling point, and also from the density and refractive index. Densities were measured at 293.15 K using a bicapillary pycnometer with an accuracy of 5 parts in 10⁵. Refractive indexes were measured at 293.15 K with an Abb'e refractometer. Water was circulated to the refractometer from a constant-temperature bath at 293.15 K. The accuracy of the refractive index measured is on the order of 0.0002.

TABLE I Source, purity grades, densities, ρ and refractive indexes, n_D of pure components at 293.15K

Component	Source	Purity	$\rho (g \cdot cm^{-3})$		n _D	
			expt.	lit.	expt.	lit.
1,2-ethanediol	Merck	99%	1.10891	1.1088 [#]	1.4314	1.4317 ^a
1,2-propanediol	Aldrich	99.5%	1.0362	1.0361 ^b	1.4323	1.4324 ^b
1,2-butanediol	Fluka	99%	1.00345	1.0034°	1.4382	1.4380

^a Ref. [4]. ^b Ref. [5]. ^c Ref. [6].

Table I also gives the density and refractive index measurements which agree with values obtained from the literature [4-6]. Excess molar volumes were measured with an accuracy of $0.003 \text{ cm}^3 \cdot \text{mol}^{-1}$, using a two-limb pyrex glass dilatometer described earlier [7]. Known amounts of the two components were confined over mercury in the absence of air in the two-limbs of the dilatometer. The dilatometer (mounted on a stand) was immersed in a thermostat bath which was controlled to ± 0.01 K. Mixing was achieved by rocking the cell back and forth through a defined angle. Eight dilatometers with different capacities were used to cover the entire composition range. The composition of the mixture was determined by direct weighing on an electronic balance (Mettler AE100, Switzerland) accurate to 0.001 g.

The test system benzene + cyclohexane at 298.15 K was studied in an effort to evaluate the accuracy of the experimental technique and the equipment used in this investigation. The measured excess molar volumes for this system are in good agreement with the earlier values reported in literature [8].

3. RESULTS AND DISCUSSION

The measured excess molar volumes of binary mixtures of $\{x \text{ water } + (1-x)\text{diol}\}\$ at 293.15, 303.15, and 313.15K are listed in Table II. The experimental data at 293.15 K are graphically presented in Figure 1. The graphs of the other two temperatures are similar to Figure 1. Each set of results were fitted using a Redlich-Kister equation of the type

$$V^E/(\text{cm}^3 \cdot \text{mol}^{-1}) = x(1-x) \sum_{k=1}^{k} A_k (1-2x)^{k-1}$$
 (1)

where A_k are the coefficient obtained by a linear least squares fitting procedure and x is the mole fraction of water. In each case, the optimum number of coefficients was ascertained from an examination of the variation of the standard deviation $\sigma(V^E)$ with

$$\sigma(V^E) = \left[\sum_{\text{exp}\ t.} - V^E_{\text{calcd.}}\right)^2 / (n-p)\right]^{(1/2)}$$
(2)

1,2-ethanediol				1,2-butanediol	
x	VE	x	VE	<i>x</i>	V^E
		T = 29	3.15 K		
0702	125	.1111	198	.0812	098
1466	215	.1536	250	.1352	151
2016	290	.1966	318	.1914	228
2888	402	.2610	396	.2532	290
3610	505	.3211	487	.3109	368
4201	572	.3978	592	.3821	452
4992	671	.4566	661	.4478	519
5437	731	.5219	722	.5056	555
6081	779	.5830	722 7 4 2	.5637	603
					603 641
6828	803	.6446	729	.6202	
7514	783	.7007	684	.6920	659
8229	702	.7699	603	.7511	660
8810	555	.8121	507	.8094	633
9203	431	.8597	401	.8822	511
		.9136	272	.9316	346
		303.	15 K		
0777	119	.0956	131	.0777	121
1414	211	.1554	198	.1326	195
1905	282	.2002	255	.1966	257
2691	385	.2639	331	.2848	365
3488	469	.3337	403	.3663	448
4012	529	.3920	455	.4105	478
4883	613	.4646	541	.4879	530
5338	656	.5221	591	.5608	580
5905	70 1	.5221	641	.6226	580 610
6455	733	.6666	662	.6821	618 618
7192	– .733 – .754	.7311	659	.7555	618 611
	734 739				
7617		.7821	633	.8219	575
8277	675	.8440	552	.8855	482
8941	526	.8921	456	.9411	301
9305	394	.9506	244		
			15K		
0810	135	.0521	075	.0613	091
1331	206	.1162	161	.1215	159
1852	269	.1877	255	.1902	233
2449	349	.2419	316	.2411	306
3008	422	.3202	396	.3129	363
3663	512	.4144	481	.3892	444
4159	583	.4911	544	.4516	485
4811	653	.5833	603	.5080	521
5409	706	.6419	618	.5711	547
6011	733	.7191	594	.6135	566
6891	711	.7988	487	.6855	581
7313	667	.8408	40 1	.7377	569
7918	553	.8941	266	.7981	542
8489	399	.9229	188	.8514	488
9166	201	.9611	085	.9243	310

TABLE II Experimental excess molar volumes^a, V^E for the binary mixtures of {xwater + (1 - x)diols}

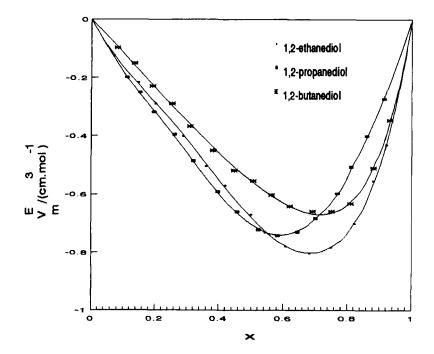


FIGURE 1 Excess molar volumes of {xwater + (1 - x)1,2-diol} at 293.15K, Continuous curves were calculated from coefficients of Eq. (1) given in Table III.

in which *n* is the number of results and *p* is the number of parameters retained in Eq. (1). The values adopted for the coefficients, A_k and the standard deviation, $\sigma(V^E)$ estimated associated with the use of Eqs. (1, 2), respectively are summarized in Table III.

While mixing diol with water one observes, as in the case of diol with N, N-dimethyleformamide [3], a contraction of the molar volume $(V^E \langle \circ \rangle)$, over the whole range of composition. Negative values of V^E increase for three temperatures in the order 1,2-ethanediol \rangle 1,2-propanediol \rangle 1,2-butanediol.

Our V^E values become less negative with increasing temperature, as is common and Figure 2 shows dependence of V^E on temperature. We propose that breaking the intermolecular hydrogen bonds in diols and formation of a strong attractive interaction between water and the two hydroxy groups on the diols causes the decrease in volume.

A/K	A_1	<i>A</i> ₂	<i>A</i> ₃	A4	A 5	$\sigma(V^E)^{a}$
		wate	r + 1, 2-etha	nediol		
293.15	- 2.7234	2,2995	9076	.0849	9 814	.006
303.15	- 2.5029	1.8078	- 1.7066	1.0347	1769	.003
315.15	2.7070	1.9907	.1684	- 2.0895	.6858	.005
		water	·+ 1, 2-propa	anediol		
293.15	- 2.8164	1.4989	.7307	- 1.0122	904 1	.005
303.15	- 2.2662	1.7325	- 1.2216	.4382	1515	.005
313.15	2.2089	1.6097	- 1.0097	1.35 9 7	1.6490	.003
		wate	r + 1, 2-buta	nediol		
293.15	- 2.2218	1.7515	- 1.2297	.9377	4223	.008
303.15	- 2.1707	1.2982	- 1.2082	1.0841	7887	.006
313.15	- 2.0617	1.2496	9528	.6861	5220	.007

TABLE III Redlich-Kister equation fitting coefficients, A_k in Eq. (1) and standard deviation, $\sigma(V^E)$ in Eq. (2) for {xwater + (1 - x)diols}

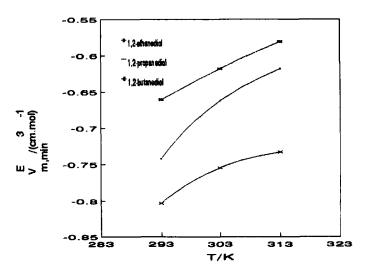


FIGURE 2 Minimum excess molar volumes vs temperature for the mixtures of $\{xwater + (1-x)diol\}$ at 293.15, 303.15, and 313.15 K.

The partial molar volumes of components, \bar{V}_i in a binary mixture can be determined from excess molar volume data as follows:

$$\bar{V}_1 = V^E + V_1^* + (1-x) \left(\frac{\partial V^E}{\partial x}\right)$$
(3)

$$\bar{V}_2 = V^E + V_2^* - x \left(\frac{\partial V^E}{\partial x}\right) \tag{4}$$

in which V_1^* and V_2^* are molar volumes of the pure components, x and (1-x) are the mole fraction of water and diol, respectively.

To obtain values of the partial molar volumes, we start by differentiation of Eq. (1) with respect to x and substitution of the result in Eq. (3,4) leads to the following equations for the partial molar volumes of water, \bar{V}_1 and diol, \bar{V}_2

$$\bar{V}_1 = V_1^* + (1-x)^2 \sum_{k=1}^{\infty} A_k (1-2x)^{k-1} - 2x(1-x)^2 \sum_{k=1}^{\infty} A_k (k-1)(1-2x)^{k-2}$$
(5)

$$\bar{V}_2 = V_2^* + x^2 \sum_{k=1}^{k} A_k (1-2x)^{k-1} + 2x^2 (1-x) \sum_{k=1}^{k} A_k (k-1) (1-2x)^{k-2}$$
(6)

Partial molar volumes of water, \bar{V}_1 and of diols, \bar{V}_2 for all compositions can be calculated by using the Redlich-Kister coefficients (Tab. III) in Eqs. (5, 6). Results at 293.15 K are listed in Table IV and \bar{V}_2 vs composition for diols in mixtures shown in Figure 3.

Much of our present interest in the volumetric properties of (water + organic) systems is focussed on the partial molar volumes of the water at in infinite dilution (x = 0) in diols and of diols in water at infinite dilution (x = 1). Setting x = 0 in Eq. (5) leads to

$$\bar{V}_{1}^{\circ} = V_{1}^{*} + \sum_{k=1}^{*} A_{k}$$
⁽⁷⁾

Similarly, setting x = 1 in Eq. (6) leads to

$$\bar{V}_{2}^{\circ} = V_{2}^{*} + \sum_{k=1}^{k} A_{k} (-1)^{k-1}$$
(8)

In Eqs. (7,8), \bar{V}_1° and \bar{V}_2° represent the partial molar volume of water at infinite dilution in diols and the partial molar volume of diols at infinite dilution in water, respectively. All partial molar volumes at infinite dilution, \bar{V}_i° were calculated at different temperatures by using the Redlich-Kister coefficients (Tab. III) in Eqs. (7,8) and are listed in Table V. We note that all of the \bar{V}_1° and \bar{V}_2° values are smaller than the

x	<i>V</i> 1	\bar{V}_2	x	\bar{V}_1	\bar{V}_2
		water + 1,2	-ethanediol		
.0702	16.59	55.90	.5437	16.39	56.30
.1466	16.76	55.94	.6081	16.54	56.30
.2016	16.69	55.96	.6828	16.78	56.24
.2888	16.50	56.04	.7514	16.98	56.07
.3610	16.38	56.13	.8229	17.26	55.68
.4201	16.36	56.22	.8810	17.79	55.09
.4992	16.33	56.29	.9203	17.72	54.45
		water + 1,2-	propanediol		
.1111	16.62	73.40	.5830	17.28	72.76
.1536	16.68	73.39	.6446	17.50	72.39
.1966	16.65	73.39	.7007	17.68	72.03
.2610	16.60	73.42	.7699	17.83	71.56
.3211	16.59	73.42	.8121	17.92	71.30
.3978	16.68	73.36	.8597	17.99	70.99
.4566	16.83	73.75	.9136	18.02	70.63
.5219	17.05	73.03			
		water + 1,2-	ebutanediol		
.0812	16.88	89.81	.5637	17.13	89.62
.1352	16.89	89.82	.6202	17.21	89.50
.1914	16.87	89.80	.6920	17.34	89.26
.2532	16.89	89.81	.7511	17.47	88.91
.3109	16.92	89.79	.8094	17.62	88.33
.3821	16.95	89.76	.8822	17.83	87.13
.4478	16.99	89.72	.9136	17.97	85.89
.5056	17.07	89.69			

TABLE IV Partial molar volumes^a of water, \overline{V}_1 and diols, \overline{V}_2 in Eqs. (5,6), for {xwater + (1 - x)diol} at 293.15 K

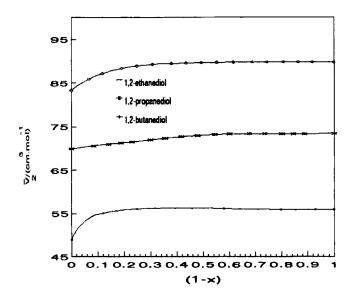


FIGURE 3 Partial molar volume of 1, 2-diol in mixtures of $\{xwater + (1 - x)diol\}$ at 293.15 K.

<i>T</i> / <i>K</i>	ν ₁	₽ [°] 2
	water + 1,2-ethanediol	
293.15	15.83	48.97
303.15	16.55	54.22
313.15	16.21	54.61
	water + 1,2-propanediol	
293.15	15.54	69.96
303.15	16.63	67.98
313.15	16.84	72.33
	water + 1,2-butanediol	
293.15	16.86	83.25
303.15	16.49	85.06
313.15	16.55	85.75

TABLE V Partial molar volumes of water at infinite dilution in diols^a, \bar{V}_1° and diols at infinite dilution in water^a, \bar{V}_2° in Eqs. (7, 8) for {xwater + (1 - x)diols}

corresponding molar volumes of the pure water, V_1^* and diols, V_2^* . This observation is consistent with the ideal that the molar volume of pure water is a result of the sum of the "actual" molecular volumes plus the "empty" volume that arises from the hydrogen-bonded open structure of liquid water.

Acknowledgements

The authors thank the university authorities for providing the necessary facilities to carry out the work.

References

- [1] Iloukhani, H. (1997). J. Chem. Eng. Data, 42, 802.
- [2] Iloukhani, H. and Parsa, J. B. (1998). J. Phys. Chem. Liq., 36, 141.
- [3] Iloukhani, H. and Ghorbani, R. (1998). J. Solution Chem., 27(2), 141.
- [4] Riddick, J. A., W. B. and Sakano, T. (1986). Organic Solvents, 4th ed; (Wiley, New York, 1986).
- [5] Grasselli, J. G. and Ritchey, W. M. (1975). Atlas of Spectral Data and Physical Constants for Organic Compounds, Vol. III, (CRC Press, 1975).
- [6] Czechowski, G., Zywuchi, B. and Jadzyn, J. (1988). J. Chem. Eng. Data, 33, 55.
- [7] Reddy, K. S. and Naidu, P. R. (1977). Can. J. Chem., 55, 76.
- [8] Stooky, D. J., Sallak, H. M. and Smith, B. D. (1973). J. Chem. Thermodyn., 5, 741.